Wireless Multimedia Sensor Networks: Challenges and Opportunities

Sajal K. Das

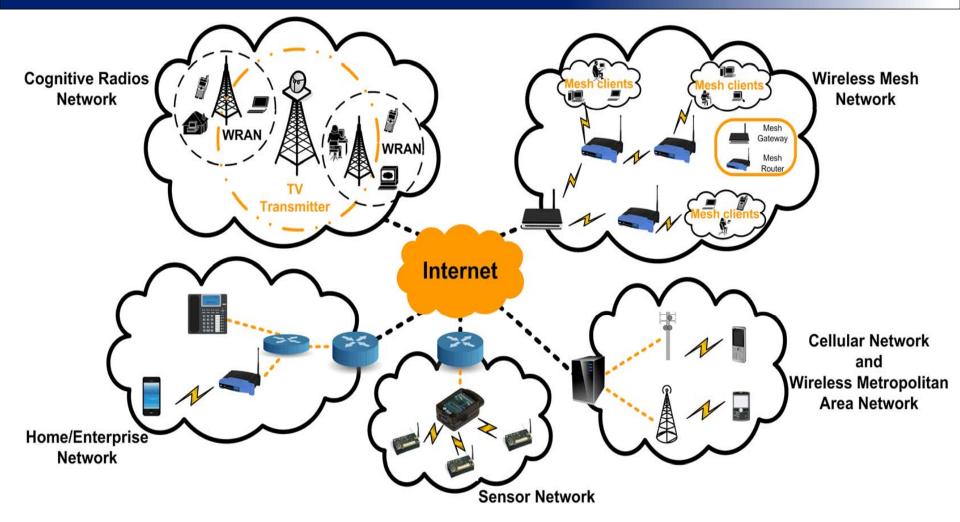
E-mail: das@uta.edu

Dept. of Computer Science and Engineering
Universty of Texas at Arlington

Center for Research in Wireless Mobility and Networking

http://crewman.uta.edu

Position Statements


Collaborative Multimedia (Multi-modal)
 Sensing is the way to go!

Pervasive Computing and Social Informatics is the future!

Next Generation Wireless Networks

Opportunistic Clouds of Multi-modal Wireless Access Devices, Heterogeneous Access Networks, Services and Applications

Wireless Sensor Networks (WSN)

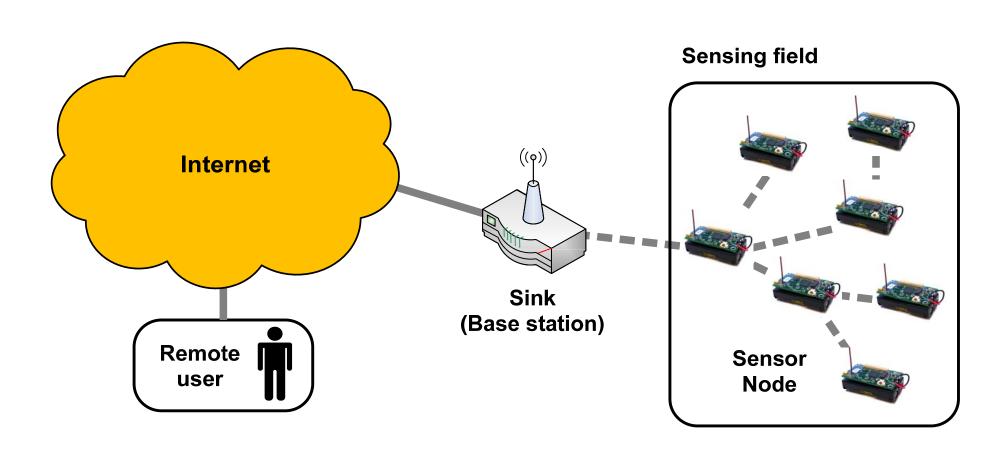
Computation

Sensory Data: A/D conversion, Compression, Filtering, Aggregation, Analysis

Communication (Wireless)

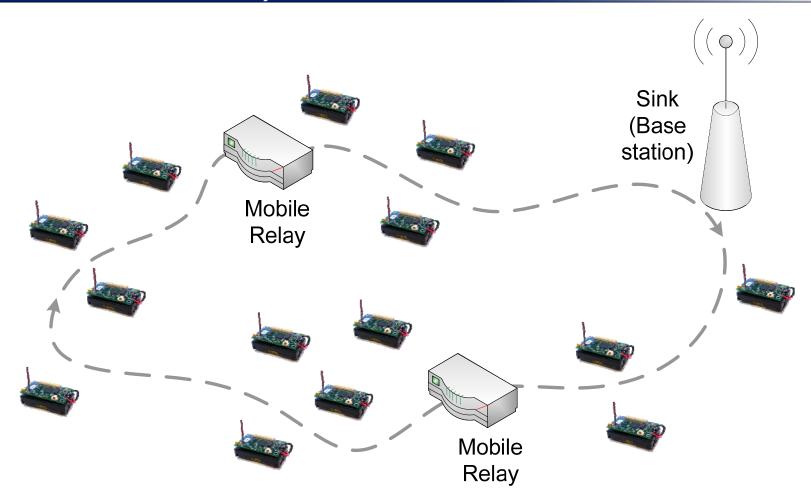
Broadcast sensory data, Dissemination, Routing

Control (Sensing / Actuation)


Sensing the physical world: temperature, humidity, pressure, light, velocity, sound, image

Static WSNs

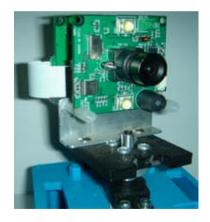
Traditional WSN architecture



Mobile WSNs

WSNs with mobile relays

M. Di Francesco, S. K. Das, G. Anastasi, "Wireless Sensor Networks with Mobile Elements: A Survey," *ACM Transactions on Sensor Networks*, Vol. 8, No. 1, Aug. 2011.


Emerging Trends in Sensors

Multimedia WSNs

- Multimedia sensors (with image, audio/video streaming)
 - Application-specific devices
 - ⇒ Surveillance cameras, stereo-cameras
 - Multimedia sensing platforms
 - ⇒ Off-the-shelf products
 - ⇒ Custom platforms

Y. Liu and S. K. Das, "Information Intensive Wireless Sensor Networks: Potential and Challenges," *IEEE Communications*, Vol. 44, No. 11, pp. 142-147, Nov. 2006.

Emerging Trends in Sensing Applications ***(REW)

Smartphones and participatory sensing

- Smartphones as sensing platforms
 - Abundance of sensors
 - ⇒ Acceleration, location, sound, video, orientation
 - Rich in processing and storage resources
 - ⇒ Enabling computational-intensive applications
 - Several wireless technologies
 - ⇒ WiFi, Bluetooth, long range cellular radio

- Users involved in sensing campaigns
 - ⇒ Traffic/accident monitoring, well being, pollution control
 - ⇒ Incentives for participation

Multimedia and Heterogeneous WSNs

Putting everything together

- A wide variety of sensing devices
- Each device best suited for a specific task
- Exploit heterogeneity for collaborative sensing

Advantages of Collaborative Sensing

Energy conservation and sensing accuracy

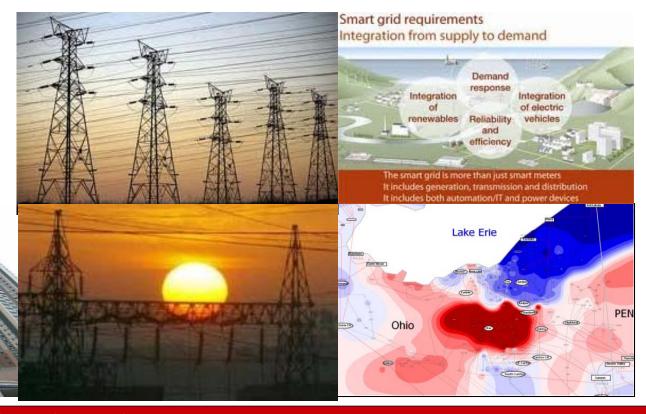
- Multi-scale and triggered sensing
 - Low-power low-accuracy sensor can be used
 - Higher accuracy (power-hungry) sensors can be exploited only when necessary
 - ⇒ Tradeoff between accuracy and energy consumption
- Different sensing modalities
 - Better characterization of the environment
 - □ Data fusion
 - Higher efficiency
 - ⇒ Less bandwidth and energy usage

J. Wang, Y. Liu, and S. K. Das, "Energy Efficient Data Gathering in Wireless Sensor Networks with Asynchronous Sampling," *ACM Transactions on Sensor Networks*, Vol. 6, No. 3, May 2010.

Premise: Sensors Everywhere

- Ultra light, ultra power, embeddable wireless devices networked everywhere (*Internet of things*)
- Sensors will be all pervasive, from clothing to coffee mugs to building structures
- Wireless and ubiquitous connectivity taken for granted
- Cognitive networks based overlay architectures
- Content rich (multi-modal) sensor applications
- Information deluge (e.g., recording every event in life)

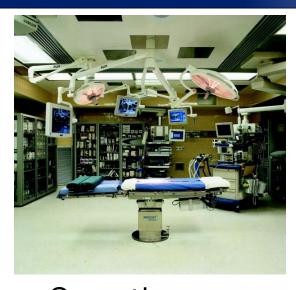
Broader Impacts


- Societal Grand Challenges (National & Global)
 - Security and Safety (before, during and after events)
 - Healthcare (health risks, wellbeing and care)
 - Energy & Sustainability (monitoring and mitigation)
 - Extreme Events Management (disasters, forest-fires, ...)
- Citizen Science
 - Smart phones w/ burgeoning capabilities and sensors
 - Deep penetration of mobile devices and networking
- How to handle pervasive computing at scale?

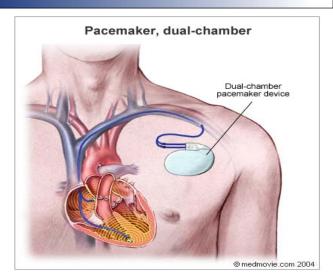
Energy and Sustainability

- Smart appliances, buildings, power grid
 - Net-zero energy buildings
 - Minimize peak system usage
 - No cascading failures

Climate control



Smart Health Care



Infusion pump

Operating room of future

- ⇒ Patient records at every point of care
- ⇒ 24/7 monitoring and treatment
- ⇒ Assisted Technology for everyone
- ⇒ Smart prosthetics

Embedded medical devices

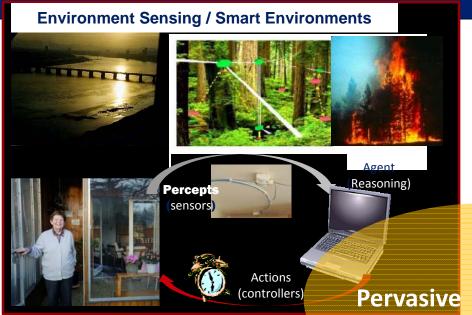
ElderCare

Securing Cyber-Physical Critical Infrastructure

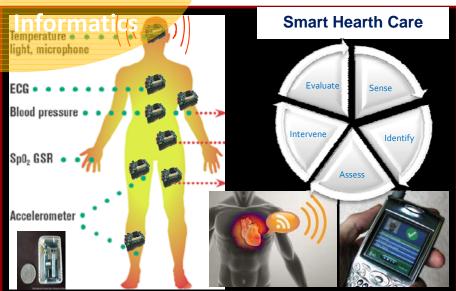
Sajal Das, Krishna Kant, Nan Zhang

Wireless Multimedia Sensor Networks: New Challenges

- How to handle higher data rates (video/audio streaming)?
 - Innovative energy-saving architectures, algorithms, and protocols
- How to exploit higher spatio-temporal data correlation?
 - In-network: Fusion, estimation, detection, filtering, gathering, ...
- How to provide higher information assurance?
 - Accuracy, reliability, fault-tolerance, resiliency, security, robustness, ...
- How to deal with emerging security and privacy threats?
 - Virus spreading, e.g., Cabir for wireless cell phone networks


Research Opportunities Uncertainty Management

- How to deal with (or tame) inherent Uncertainty?
 - ⇒ sensing, wireless communications, mobility, topology control, coverage, routing, bandwidth and battery power, ...
 - distributed collaboration and coordination, aggregation (fusion), processing, decision making, duty cycling, ...
- Context Resolution and Situation-Awareness
 - ⇒ How to unambiguously capture contexts from multi-modal sources despite noisy and incomplete information?
- Supporting QoS and QoI (quality of information)
 - ⇒ How to improve information accuracy, reliability, latency? How to measure sensing quality in presence of uncertainty?


Socio-Pervasive World

Recap: Position Statements

Collaborative Multimedia (Multi-modal)
 Sensing is the way to go!

Pervasive Computing and Social Informatics is the future!