
Multimedia Networking —
What’s Over and What’s Coming

Baochun Li
Department of Electrical and Computer Engineering

University of Toronto
ICCCN 2011 Multimedia Networking Panel

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Two stories to tell about
multimedia networking

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What’s in the rear view
mirror and what’s

coming up?

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Traditional multimedia
applications

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Streaming and
conferencing

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Networking for multimedia: the holy grail

Late 80s to late 90s: Quality of Service
support in the core Internet infrastructure
Late 90s to late 00s: Let the end hosts
contribute their resources
Beyond 2010: Now what?

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Rear-view mirror: Quality of Service in the 90s

The main idea: Making reservations to
guarantee quality
A second idea: Allow market prices to work
Eventual debate: Over-provisioning vs.
reservations
Why it’s over? Too complex to deploy?

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Rear-view mirror: peer-to-peer in the 2000s

The main idea: Ask the end hosts to
contribute their last-mile bandwidth to
improve quality and to save costs
Simple to deploy: Used by millions of users
for on-demand and live streaming
Eventual debate: Cloud or P2P?

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Is P2P over by now?

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Yes, P2P is (almost) over

0

1750

3500

5250

7000

2001 2003 2005 2007 2009 2011
* Advanced Google Scholar search: “P2P” in the paper title

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

It’s now 2011 —
what’s coming?

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Multimedia going social,
and moving to mobile

devices

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

One side of the coin: asynchronous social

Sending media (photos + videos) to other users when
they are offline

Via IM, Facebook-like or Twitter-like social networks

Cloud hosting services will become completely
transparent: no one cares where media is hosted

Throughput is not important when uploading, as
long as the media is reliably stored
Throughput is not that important when downloading
— as long as the streaming rate is satisfied, a
problem that depends on last-mile capacity

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The flip side: synchronously social

Interacting synchronously with others

But not necessarily limited to Skype-like audio or video conferencing!

Users are more willing to
synchronously push
application-specific
metadata to their friends
in a social setting —

Location coordinates in 3D
maps
Player-specific states in an
interactive game

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Socialize with mobile devices in the same room

With users addicted to their smartphones, socializing
can be in the same room, in addition to around the
world

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

One idea: streaming gestures — just like video

Streaming gestures from one user to all
participating users in a group

Reusable across applications that use gestures

Gesture streaming is not very demanding
Reliable and in-order packet delivery
Reasonable delays
Not much bandwidth is needed

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Alice Bob

Multi-touch streams

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Design choices in gesture streaming

To guarantee reliable and in-order delivery —
TCP over servers in the cloud or directly over
local wireless connections
To minimize streaming delays — Multiple
paths if needed

dependent with an alarmingly high probability. In Sec. IV,
we propose a solution to mitigate such linear dependence
among coded blocks, and evaluate its performance. We discuss
related work and conclude the paper in Sec. V and Sec. VI,
respectively.

II. GESTUREFLOW: TRANSPORTING GESTURE STREAMS

Since gestures are generated by users in real time, the
corresponding bit rate of a gesture stream is low, but may
become bursty. Further, since gestures need to be “replayed”
on a receiver by the same application so that application states
are affected by these gestures, any missing gestures incur
a high risk of inducing inconsistent application states. For
example, in a music composition application where a double-
tap gesture may be used to add a musical note, if the gesture is
not received correctly, the “replay” on a receiver will not add
the intended note. Finally, since gestures need to be streamed
live, it is important to incur the lowest possible delay when
transporting these gestures as data packets.

It is intuitive to conceive a design where a TCP connection
is established between each pair of users, forming a complete
graph of overlay. The reliable and in-order delivery of a stream
of bytes is guaranteed by TCP, by using a combination of cu-
mulative acknowledgments, checksums, and retransmissions.
However, the realistic nature of traffic on the Internet dictates
that overlay links based on TCP connections offer a wide range
of available bandwidth and delays, and they vary significantly
over time as well. Since TCP uses retransmissions to guarantee
reliable delivery, delivery delays may escalate with a slightly
more congested link, leading to high delay jitters.

In GestureFlow, once a receiver starts playing back a gesture
stream, such playback should not be paused. Since intervals
between multi-touch gesture events should be maintained to be
precisely the same as they are originally generated, the receiver
should wait for an initial startup delay before playback begins,
and such an initial delay should be sufficiently long to cover
any anticipated delay jitter during streaming. A longer initial
startup delay should be used to mask a higher delay jitter.

To minimize streaming delays yet with guaranteed reli-
ability, we propose to take advantage of the “all-to-all”
broadcast nature of GestureFlow, where every participating
node is the source (sender) of a broadcast session to all others,
and multiple broadcast sessions exist concurrently in the
complete overlay graph connecting all users. We advocate two
approaches to address the challenges of low-delay streaming
with guaranteed reliability.

First, to guarantee reliable delivery of all packets, we
propose to take advantage of random network coding, to
stream coded packets using UDP flows rather than TCP, and
to allow for possible relay nodes in each broadcast session
to relay packets that they receive after recoding. Second, to
minimize streaming delays, it is natural to utilize multiple
overlay paths between the source to each receiver, instead of a
direct connection in the case of using TCP. Each of these paths
is either a direct UDP link between the source and the receiver,
or a two-hop path that uses the help of a single relay node.

The essence of our transport solution in GestureFlow is to use
network coding as a rateless erasure code for all broadcast
sessions to guarantee reliable delivery, tightly coupled with
the use of multiple overlay paths (each of one or two hops)
to minimize broadcast delays. In GestureFlow, a data packet
flows conceptually from each source, in a coded form that is
mixed with other packets, taking its own path with the lowest
delay. Fig. 1 illustrates an example to show how packets are
transmitted in coded forms and following different paths.

1

2

3

4

Fig. 1. Streaming coded blocks along multiple paths. Data packets from
Node 1 are being transmitted to Node 4 in coded form, either using a direct
link, or relayed by Node 2 and Node 3 after being recoded with their own
data packets.

A. Coding Gesture Broadcast Sessions

Random network coding has been well established in recent
research literature [2], [3], and has been shown to maximize
throughput in multicast sessions. With random network cod-
ing, ! data blocks b = ["1, "2, . . . , "!]" , each with % bytes,
are to be transmitted from the source to multiple receivers
in a network topology. The source transmits coded blocks,
each coded block &# is computed as a linear combination
of original data blocks &# =

∑!
$=1 '#$ ⋅ "$ in a finite field

(typically GF (28)), where the set of coding coefficients
['#1, '#2, ⋅ ⋅ ⋅ , '#!] is randomly chosen. A relay node performs
similar random linear combinations on received coded blocks
with random coefficients, in order to produce recoded blocks
to be relayed to a receiver. Coding coefficients related to
original blocks "$ are transmitted together with a coded block.
A receiver decodes as soon as it has received ! linearly
independent coded blocks x = [&1, &2, . . . , &!]" , either from
the source or from a relay. It first forms a ! × ! coefficient
matrix C, in which each row corresponds to the coefficients
of one coded block. It then decodes the original blocks
b = ["1, "2, . . . , "!]" as b = C−1x. Such a decoding
process can be performed progressively as coded blocks arrive,
using Gauss-Jordan elimination to reduce C to its reduced
row-echelon form. Fig. 2 shows an example of reducing
the coefficient matrix to its reduced row-echelon form, after
receiving a new coded block.

Decoded

1 0 0 0 0
0 1 1 2 1

1 0 0 0 0
0 1 0 0 0
0 0 1 2 17 2 3 6 3

Decoded
b1 b2 b3 b4 b5 b1 b2 b3 b4 b5

Fig. 2. Block 2 (!2) is decoded after receiving the third coded block.

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Sync. vs. async. social interaction

Is there a middle ground?
Achieved with real-time notifications and
in-app state updates
but no need for a user to respond
immediately
Example: collaborative authoring in the
same mobile app
I call it “push updates without the push”

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What we need to realize

We can move beyond media streaming
applications
Mobile applications have become routine
Social media interaction can be synchronous or
asynchronous (or somewhere in between)
It is not limited to Skype-like conferencing
New networking solutions can be designed
System frameworks are needed to support social
media interaction in mobile applications

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Thank you

