Why is P2P the Most Effective Way to **Deliver Internet Media Content**

Xiaodong Zhang

Ohio State University

In collaborations with Lei Guo, Yahoo! Songqing Chen, George Mason Enhua Tan, Ohio State Zhen Xiao, IBM T. J. Watson Research

Media contents on the Internet

Video applications are mainstream

Video traffic is doubling every 3 to 4 months

The Power of measurements and modeling

- Media delivery on the Internet
 - Internet is an open, complex system
 - Media traffic is user-behavior driven
- Challenges
 - Lack of QoS support
 - Lack of Internet management and control for media flow
 - Thousands of concurrent streams from diverse clients
- Measurements and modeling are critical for
 - Evaluating system performance under the Internet environment
 - Understanding user access patterns in media systems
 - Providing guidance to media system design and management

Zipf distribution is believed the general model of Internet traffic patterns

Zipf distribution (power law)

- Characterizes the property of scale invariance
- Heavy tailed, scale free

80-20 rule

- Income distribution: 80% of social wealth owned by 20% people (Pareto law)
- Web traffic: 80% Web requests access 20% pages (Breslau, INFOCOM'99)

System implications

- Objectively caching the working set in proxy
- Significantly reduce network traffic

$$y_i \propto i^{-\alpha}$$
 α : 0.6~0.8

i: rank of objects y_i : number of references

5

Does Internet media traffic follow Zipf's law?

Web media systems

Chesire, USITS'01: Zipf-like Cherkasova, NOSSDAV'02: non-Zipf

P2P media systems

Gummadi, SOSP'03: non-Zipf lamnitchi, INFOCOM'04: Zipf-like

VoD media systems

Acharya, MMCN'00: non-Zipf Yu, EUROSYS'06: Zipf-like

Live streaming and IPTV systems

Veloso, IMW'02: Zipf-like Sripanidkulchai, IMC'04: non-Zipf

Inconsistent media access pattern models

heuristic assumptions

- Still based on the Zipf model
 - Zipf with exponential cutoff
 - Zipf-Mandelbrot distribution
 - Generalized Zipf-like distribution
 - Two-mode Zipf distribution
 - Fetch-at-most-once effect
 - Parabolic fractal distribution
 - ...

All case studies

- Based on one or two workloads
- Different from or even conflict with each other
- · An insightful understanding is essential to
 - Content delivery system design
 - Internet resource provisioning
 - Performance optimization

7

Challenges of addressing the issues

- Existing studies cannot identify a general media access pattern
 - Limited number of workloads
 - Constrained scope of media traffic
 - Biased measurements and noises in the data set
- · Model should be accurate, simple, and meaningful
 - Characterize the unique properties
 - Have clear physical meanings
 - Observable and verifiable predictions
 - Impacts on system designs
- Model validation methodology
 - Goodness-of-fit test
 - Reexamination of previous observations
 - Reappraisal of other models

Research Objectives

- Discover a general distribution model of media access patterns
 - Comprehensive measurements and experiments
 - Rigorous mathematical analysis and modeling
 - Insights into media system designs

9

Outline

- Motivation and objectives
- Stretched exponential model of Internet media traffic
- Dynamics of access patterns in media systems
- · Caching implications
- Concluding remarks

Workload summary

- · 16 workloads in different media systems
 - Web, VoD, P2P, and live streaming
 - Both client side and server side

nearly all workloads available on the Internet

- Different delivery techniques
 - Downloading, streaming, pseudo streaming
 - Overlay multicast, P2P exchange, P2P swarming

all major delivery techniques

- Data set characteristics
 - Workload duration: 5 days two years
 - Number of users: 10³ 10⁵
 - Number of requests: 10⁴ 10⁸
 - Number of objects: 10² 10⁶

data sets of different scales

4.4

Stretched exponential distribution

 Media reference rank follows stretched exponential distribution (passed Chi-square test)

Probability distribution: Weibull

$$P(X \le x) = 1 - \exp\left[-\left(\frac{x}{x_0}\right)^c\right]$$

c: stretch factor

Rank distribution:

- fat head and thin tail in log-log scale
- straight line in logx-yc scale

i: rank of media objects (N objects)

y: number of references

$$P(y > y_i) = \frac{i}{N}$$

$$y_i^c = -a \log i + b \ (1 \le i \le N, a = x_0^c)$$

 $b = 1 + a \log N$ (assuming $y_N = 1$)

Evidences: Web media systems (server logs)

x: rank of media object, y: number of references to the object. Title: workload name (median file size)

- data in stretched exponential scale
- data in log-log scale

R2: coefficient of determination (1 means a perfect fit)

HPC-98: enterprise streaming media server logs of HP corporation (29 months)
HPLabs: logs of video streaming server for employees in HP Labs (21 months)

ST-SVR-01: an enterprise streaming media server log workload like HPC-98 (4 months)

Evidences: Web media systems (req packets)

All collected from a large cable network hosted by a well-known ISP

PS-CLT-04: first IP packets of HTTP requests for media objects (downloading and pseudo streaming), 9 days

ST-CLT-04: RTSP/MMS streaming requests (on-demand media), 9 days

ST-CLT-05: RTSP/MMS streaming requests (on-demand media), 11 days

Evidences: VoD media systems

YouTube-06: cumulative number of requests to YouTube video clips, by crawling on web pages publishing the data

15

Evidences: P2P media systems

KaZaa-02: large video file (> 100 MB. Files smaller than 100 MB are intensively removed) transferring in KaZaa network, collected in a campus network, 203 days.

KaZaa-03: music files, movie clips, and movie files downloading in KaZaa network, 5 days, reported as Zipf in INFOCOM'04.

BT-03: 48 days BitTorrent file downloading (large video and DVD images) recorded by two tracker sites

Evidences: Live streaming and other systems

Akamai-03: server logs of live streaming media collected from akamai CDN, 3 months, reported as two-mode Zipf in IMC'04

Movie-02: US movie box office ticket sales of year 2002.

IMDB-06: cumulative number of votes for top 250 movies in Internet Movie Database web site

17

Why Zipf observed before?

media server

- Media traffic is driven by user requests
- Intermediate systems may affect traffic pattern
 - Effect of extraneous traffic
 - Filtering effect due to caching
- Biased measurements may cause Zipf observation

Fetch-at-most-once effect

- SOSP'03: "flattened head" of P2P access pattern
 - Media access pattern is Zipf-like
 - Users fetch a file at most once
 Unlimited cache for all users
- Contradict with streaming media measurements
 - SE access pattern, without caching
- Small streaming media objects
 - Users fetch an object multiple times
- Large streaming media objects
 - User may fetch and view only once
- Conclusion
 - No relation with "fetch-at-most-once"

Why media access pattern is not Zipf

- "Rich-get-richer" phenomenon
 - Pareto, power law, ...
 - The structure of WWW
- Web accesses are Zipf
 - Popular pages can attract more users
 - Pages update to keep popular
 - Yahoo ranks No.1 more than six years
 - Zipf-like for long duration
- Media accesses are different
 - Popularity decreases with time exponentially
 - Media objects are immutable
 - Rich-get-richer not present
 - Non-Zipf in long duration

23

Outline

- Motivation and objectives
- Stretched exponential model of Internet media traffic
- Dynamics of access patterns in media systems
- Caching implications
- Concluding remarks

Dynamics of Access Patterns in Media Systems

- Media reference rank distribution in log-log scale
 - Different systems have different access patterns
 - The distribution changes over time in a system (NOSSDAV'02)
- All follow stretched exponential distribution
 - Stretch factor c
 - Minus of slope a
- Physical meanings
 - Media file sizes
 - Aging effects of media objects
 - Deviation from the Zipf model

Stretched factor and media file sizes

file size vs. stretch factor c

• 0 – 5 MB: c <= 0.2 • 5 – 100 MB: 0.2 ~ 0.3

• > 100 MB: c >= 0.3

c increases with file size

- · Other factors besides file size
 - Different encoding rates and compression ratios
 - Video and audio are different
 - Different content type: entertainment, educational, business

27

Conservations in dynamic media systems

- · Media requests over time
 - Constant media request rate $\lambda_{
 m req}$
 - Constant object birth rate $\lambda_{
 m obj}$

Number of accessed objects: $N(t) = \lambda_{obj}t + N'(t) = \lambda_{obj}t + O(\log t)$ Objects created in [0, t) Objects created in $(-\infty, 0]$

Stretched exponential parameters

- In a media system
 - Constant request rate
 - Constant object birth rate
 - Constant median file size
- Stretch factor c is a time invariant constant
- Parameter a increases with time

$$a = \left[\frac{\lambda_{req}}{\lambda_{obj}} \frac{1}{1 + \frac{N'(t)}{\lambda_{obj}t}} \frac{1}{\Gamma(1 + \frac{1}{c})}\right]^{c}$$

$$a \rightarrow \left[\frac{\lambda_{req}}{\lambda_{obj}} \frac{1}{\Gamma(1+\frac{1}{c})}\right]^{c}$$

Deviation from the Zipf model

$$\frac{|EF|}{|OE|} \rightarrow 1$$
 when $a \log N \rightarrow \infty$

$$a = \begin{bmatrix} \lambda_{req} & 1 & 1 \\ \lambda_{obj} & 1 + \frac{N'(t)}{\lambda_{obj}t} & \Gamma(1 + \frac{1}{c}) \end{bmatrix}$$

- a increases with c (c < 2)
- a increases with $\lambda_{\rm reg}/\lambda_{\rm obj}$
- a increases with t
 Big media files have large deviation
 Deviation increases with time

Outline

- · Motivation and objectives
- · Stretched exponential model of Internet media traffic
- Dynamics of access patterns in media systems
- Caching implications
- Conclusion

3

Caching analysis methodology

- Analyze caching with reference rank distribution
 - Requests are independent
 - Objects occupy unit storage volume
- Optimal hit ratio
 - Unlimited cache

$$H_{opt} = \frac{\text{\# of hits}}{\text{\# of reqs}} = \frac{\text{\# of reqs - \# of objs}}{\text{\# of reqs}} = \frac{N\langle y \rangle - N}{N\langle y \rangle} = 1 - \frac{1}{\langle y \rangle}$$

- -N objects, cache size is ηN
 - Zipf-like distribution $H_{zf}(\eta) = \eta^{1-\alpha} \eta(1-\alpha)$ for $\alpha < 1$
 - $\textbf{ Stretched exponential } \quad H_{se}(\eta) = \frac{\Gamma(1+\frac{1}{c}) \gamma(1+\frac{1}{c},\frac{1}{a}-\log\eta)}{\Gamma(1+\frac{1}{c}) \gamma(1+\frac{1}{c},\frac{1}{a})} \frac{\eta}{\langle y \rangle}$

Modeling caching performance

Parameter selection

Zipf: typical Web workload (α=0.8) SE: typical streaming workload

(c = 0.2, a = 0.25, same as ST-CLT-05)

Asymptotic analysis for small cache size k (k << N)

• Zipf
$$H_{\mathcal{J}}(\frac{k}{N}) = \sum_{i=1}^{k} \frac{1-\alpha}{i^{\alpha}} \times \frac{1}{N^{1-\alpha}}$$

• SE
$$H_{se}(\frac{k}{N}) = \frac{k}{\langle y \rangle} \times \frac{(\log N)^{\frac{1}{c}}}{N}$$

$$\lim_{N\to\infty} \frac{H_{se}(\frac{k}{N})}{H_{f}(\frac{k}{N})} = \lim_{N\to\infty} c_1 \frac{(\log N)^{\frac{1}{c}}}{N^{\alpha}} = 0$$

Media caching is far less efficient than Web caching

35

Potential of long term media caching

- $\boldsymbol{H}_{opt} = 1 \frac{1}{\left\langle y(t) \right\rangle} = 1 \frac{\lambda_{obj}}{\lambda_{req}} \left(1 + \frac{N'(t)}{\lambda_{obj}t} \right)$
 - Short term
 - Requests dominated by old objects $N'(t) >> \lambda_{obj}t$
- Long term
 - Requests dominated by new objects $\lambda_{obj}t >> N'(t)$
- · Optimal hit ratio of caching 10% objects
 - PS-CLT-04: 0.52 for 9 days, 0.85 maximal
 - ST-CLT-04: 0.48 for 9 days, 0.84 maximal
 - ST-CLT-05: 0.54 for 11 days, 0.85 maximal
- Request correlation can be further exploited
 - Object popularity decreases with time

Great improvement when $\lambda_{obj}t >> N'(t)$

Long time to reach optimal

- · Media objects have long lifespan
 - Most requested objects are created long time ago
 - Most requests are for objects created long time ago
- To achieve maximal concentration
 - Very long time (months to years)
 - Huge amount of storage
 - Only peer-to-peer systems provide such a huge space with a long time

37

Summary

- Media access patterns do not fit Zipf model
- · We give reasons why previous results were confusing
- Media access patterns are stretched exponential
- Our findings imply that
 - Client-server based proxy systems are not effective to deliver media contents
 - P2P systems are most suitable for this purpose
- We provide an analytical basis for the effectiveness of a P2P media content delivery infrastructure

Stretched Exponential Distribution: Decentralized Content Delivery in Internet

- · Centralized Internet accesses follows zipf
- Decentralized Internet accesses (in an organized way, such as P2P) follow SE
- Other P2P-like accesses fitting SE reported since PODC'08
 - IPTV, user channel selection distribution (SIGMETRICS'09)
 - PPLive, P2P streaming request distribution (ICDCS'09)
 - Wikipedia, Yahoo answers, social network posting distribution (KDD'09)
 - Access distribution in PPStream is converting from zipf (2007) to stretched exponential (2009) (a report from Nanjing Statistical Instutute)

39

References

☐ The stretched exponential distribution, PODC'08
☐ Social network contributors' distribution, KDD'09
□PSM-throttling, streaming in WLAN with low power, ICNP'07
□ SCAP, wireless AP caching for streaming, ICDCS'07.
□ Quality and resource utilization of Internet streaming, IMC'06
☐ Internet streaming workload analysis, WWW'05
☐ Measuring and modeling BitTorrent, IMC'05
□ Sproxy, caching for streaming, INFOCOM'04

Caching effect on SE distribution

Page clicks of movie trailers, published in IFILM Web site

- Pages can be cached by web browser and proxy
- Page reload events can be accumulated over time
 - Trivial in one week
 - Increase with time gradually
- Number of affected objects is small
 - Movie replay events are not common

41

Client requests with time

Cumulative number of requested objects born before and after workload collection

Before workload collection After workload collection $N'(t) \propto t$

In short duration, media reference rank distribution is stationary

Segment-based streaming media caching

- · Streaming media are often partially accessed
 - Segment caching is efficient
- "Ideal" segment reference rank distribution
 - M segments per object, no partial access
 - Two mode SE distribution

43

Segment-based streaming media caching

- Segmentation: 5 seconds of media data
- · Segments rank distribution: two-mode SE
 - $-\,$ Same stretch factor c
 - Smaller *a* than object rank distribution
- Less temporal locality

Segment caching performance

 η (i): minimum cache

size to hold object i

- Segment hit ratio pprox byte hit ratio
 - Much lower than object hit ratio
- · LRU is less efficient for media caching
 - Less request concentration
 - Larger working set
- Segment LFU is even worse
 - Sequential order in an object not captured

Conventional replacement policies are not efficient