Cyber-physical systems – linking sensing, networking, computation and people

Jim Kurose Department of Computer Science University of Massachusetts Amherst MA USA

ICCCN 2009, San Francisco

Q: How are these "linked"?

Wide range of "sensors"

habitat monitoring microclimate monitoring animal vehicle tracking tracking in sensor field auto traffic video monitoring

radar/weather

surveillance

underwater sensing

satellite observation (EODIS)

network traffic monitoring

in spite of differences, commonalities as well!

- introduction
- □ CASA: collaborative adaptive sensing of the atmosphere
 - □ introduction, motivation
 - testbeds
- research challenges: integrating sensors, networking, computation, people
 - system architecture
 - energy-constrained environments
 - □ joint sensing/communication
- □ incorporating end-user utilities
- discussion: the big picture

The grand challenge

Revolutionize our ability to observe.

understand, predict ----weather hazards, using serious serious that sample the atmosphere where and a whale and the serious are greatest.

- 158 radars operated by NOAA
- 230 km Doppler mode, 460 km reflectivity-only mode
- "surveillance mode":
 - sit and spin

The Sensing Gap

Sparse, high-power radar

- sensing gap: earth curvature effects prevent 72% of the troposphere below 1 km from being observed
- coarse resolution

CASA: collaborative adaptive sensing of the atmosphere

CASA: dense network of low power radars:

- sense lower 3 km of earth's atmosphere
- collaborating radars:
 - improved sensing
 - improved detection, prediction
- finer spatial resolution
- responsive to multiple end-user needs

"Sample atmosphere when and where end-user needs are greatest"

CASA: dense network of inexpensive, short range radars

- finer spatial
 - resolution
- beam focus: more energy into sensed volume
- multiple looks: sense volume with most appropriate radars

Movie: NetRad in operation May 14, 2009

- □ introduction
- □ CASA: collaborative adaptive sensing of the atmosphere
 - □ introduction, motivation
 - testbeds
- research challenges: integrating sensors, networking, computation, people
 - system architecture
 - energy-constrained environments
 - □ joint sensing/communication
 - incorporating end-user utilities
- □ discussion: the big picture

Overview

- □ introduction
- □ CASA: collaborative adaptive sensing of the atmosphere □ introduction, motivation
 - □ testbeds
- research challenges: integrating sensors, networking, computation, people
 - system architecture
 - energy-constrained environments
 - □ joint sensing/communication
 - □ incorporating end-user utilities
- discussion: the big picture

Optimal joint sensing/routing in energy constrained environments

- energy expenditures: sensing, send/receive data
- each node must determine:
 - ❖ s_i: sensing (data generation) rate,
 - ❖ X_{ij}: how to route sensed data towards sink,
 - subject to power constraints
- node decision affects others: sensed data must be sent

Goal: maximize utility of received data

System-wide utility function $U = \sum_i U_i(s_i)$

- \square s_i : node i sensed and delivered data rate
- $egin{array}{ll} egin{array}{ll} U_i(s_i) & \text{i utility of node } i \text{ data.} \\ & \text{concave, increasing function} \end{array}$

$$U_i(s_i)$$
 s_i

Optimization problem formulation

S: sensing rates; **X**: routing $\max_{s,X} \text{ network utility } U(s)$ s.t.

1.
$$J(s,X) = 0$$
,

2.
$$F(s, X) \leq C$$
.

3.
$$p(s, X) \leq P$$
.

- flow conservation
- routes X satisfying sensing rates s

$$J(s,X)=0$$

- link rates limited by capacities
- demand feasibility

$$F(s,X) \leq C$$

- power usage limited by available power
- power feasibility

$$p(s,X) \leq P$$

Simulation scenario CASA student testbed energy collection rate: 713W Tradar-on rate 1.5Mbps link-on trans power: 1.98W link-on receive power: 1.39W $U_i(s_i) = -w_i s_i^{-0.5}$ $U = \sum_i U_i(s_i)$

Optimal joint sensing/routing: many open questions!

- □ in-network computation (data fusion)
 - data flow no longer conserved!
- considering battery recharge/drain
- □ implementation, measurement
 - point-point directional links
 - end-end system

- ☐ introduction
- ☐ CASA: collaborative adaptive sensing of the atmosphere
 - ☐ introduction, motivation
 - testbeds
- □ research challenges: integrating sensors, networking, computation, people
 - system architecture
 - ☐ energy-constrained environments
 - □ joint sensing/communication
- incorporating end-user utilities
- ☐ discussion: the big picture

Optimizing radar scans: incorporating end user considerations

Where to point?

Find **configuration** that optimizes utility at time step k:

$$J = \max_{\underline{configurations}, C} \sum_{\underline{tasks}, \underline{t}} U(t, k) Q(t, C)$$

Utility – "how important" is task *t* to the users at time k?

$$U(t,k) = \sum_{groups,g} w_g U_g(t,k)$$

Quality – "how good" is scanning configuration C (distance, coverage, # radars) for task t?

Optimizing radar scans: architecture!

Find *configuration* that optimizes utility at time step k:

$$J = \max_{configurations, C} \sum_{tasks, t} U(t, k)Q(t, C)$$

- □ separation of "how important," U(t,k), from "how good', Q(t,C)
- □ *U*(*t*,*k*,*Q*(*t*,*C*)) would have been possible but:
 - complex to solve
 - complex to specify and update *U(t,k,Q(t,C))*
 - "stovepipe" design

How to define "how important": $U_g(t,k)$

user values for detected weather features

Event	Location	Prior Information available	NWS utility Wt=0.4	EM utility Wt=0.3	Researcher utility Wt=0.2	Vieux utility Wt=0.1
TVS detection	AOP	0	5	5	5	1
		1	4	5	5	1
20	Remote	0	5	1	5	1
ý.		1	4	1	5	1
Mesocyclone	AOP	0	4	4	4	1
		1	3	4	4	1
	Remote	0	4	1	4	1
		1	3	1	4	1
Storm cell	AOP	0	4	4	4	4
		1	2	4	4	4

How to define "how important": $U_q(t,k)$

- □ "naturally": group-sensitive utility for each feature (tornado, wind shear, hail core) scanned
- □ ... and the survey says.....

User feedback:

- □ NWS: want "mental movie" scanning "areas of interest" at regular intervals
- □ need context: scan areas around features (storm cell)
- want to joystick system (want their own network)

User Utility Rules (revised)

- □ *interval-based preferences:* "do X every Y time units"
- utility considers both objects, time

Rules	Rule trigger	Sector Selection	Elevations	# radars	Contig.	Sampling interval
NWS			•			
N1	time	360	st	1	Yes	1 / min
N2	storm	task size		1	Yes	1 / 2.5 min
EMs		7				
E1	time	360		1	Yes	1 / min
E2	reflectivity over AOI	task size	iowest	1	Yes	1 / min
E3	velocity over AOI	task size	lowest	2+	Yes	1/ 2.5 min

How to define "how important": $U_q(t,k)$

- □ "naturally": group-sensitive utility for each feature (tornado, wind shear, hail core) scanned
- □ ... and the survey says.....

User feedback:

- □ NWS: want "mental movie" scanning "areas of interest" at regular intervals
- □ need context: scan areas around features (storm cell)
- want to joystick system (want their own network)

want to joystick system (want their own network)

Virtualization: enabling the end user

- virtualization of computing, communication, and sensing resources
- □ each user:
 - sees "standalone" sensor network
 - can modify, download, execute, experiment with own code
 - implements user-specific service outside (architecturally above) infrastructure provider

Why virtualization?

- users want programmability/resources at in-network nodes: computing over local data, storage
 - good application: avoid active networking redux
- □ challenges: virtualizing sensing resources:
 - sharing: sensed data from one user usable by another (unlike bandwidth, computing)
 - * admission control: mediating among different users with different priorities

- partially satisfiable user requests? (negotiate?)
- time-vary allocation of resources?
- priorities among users (policy)?

- □ introduction
- □ CASA: collaborative adaptive sensing of the atmosphere
 - ☐ introduction, motivation
 - testbeds
- □ research challenges: integrating sensors, networking, computation, people
 - system architecture
 - energy-constrained environments
 - □ joint sensing/communication
- incorporating end-user utilities
- □ discussion: the big picture

The *really* big picture

□ importance of user requirements

"It's the

"It's the "user, stupid"
"cation, stupid"
"

"It's the work, stupid"

- □ architecture (as opposed to stovepipe) for embedding user requirements?
 - sensor networks
 - content distribution
 - special-purpose overlays

The end thanks!

?? || /* */